Exploratory Analysis

Data visualization, part 1. Code for Quiz 7.

  1. Load the R package we will use.
  1. Quiz Questions
  1. Pick one of your plots to save as your preview plot. Use the ggsave command at the end of the chunk of the plot that you want to preview.

Question: modify slide 34

ggplot(faithful) +
  geom_point(aes(x=eruptions, y=waiting,
          colour = waiting > 60))

Question: modify intro-slide 35

-Create a plot with the faithful dataset -add points with geom_point -assign the variable eruptions to the x-axis -assign the variable waiting to the y-axis -assign the colour darkorange to all the points

ggplot(faithful) +
  geom_point(aes(x=eruptions, y=waiting),
      colour="darkorange")

Question: modify intro-slide 36

ggplot(faithful) +
  geom_histogram(aes(x=waiting))

Question: modify geom-ex-1

ggplot(faithful) +
  geom_point(aes(x=eruptions, y=waiting), shape = "diamond", size = 5, alpha = 0.9)

Question: modify geom-ex-2

ggplot(faithful) +
  geom_histogram(aes(x=eruptions, fill = eruptions > 3.2))

Question: modify stat-slide-40

ggplot(mpg) +
  geom_bar(aes(x = manufacturer))

Question: modify stat-slide-41

mpg_counted <- mpg %>%
  count(manufacturer, name = "count")
ggplot(mpg_counted) +
  geom_bar(aes(x=manufacturer, y = count), stat = "identity")

Question: modify stat-slide-43

ggplot(mpg) +
  geom_bar(aes(x=manufacturer, y=after_stat(100*count/sum(count))))

Question: modify answer to stat-ex-2

ggplot(mpg) +
  geom_jitter(aes(x = class, y = hwy), width = 0.2) +
  stat_summary(aes(x = class, y=hwy), geom = "point",
  fun = "median", color = "blueviolet",
  shape = "cross", size = 9)

ggsave(filename = "preview.png", path = here::here("_posts", "2022-03-14-exploratory-analysis"))