Reading and Writing Data

Practice reading and writing data, more dplyr and a plot.

  1. Load the R packages we will use.
library(tidyverse)
library(here)
library(janitor)
library(skimr)
  1. Download CO2 emissions per capita from Our World in Data into the directory for this post.

  2. Assign the location of the file to file_csv. The data should be in the same directory as this file.

-Read the data into R assign it to emissions.

file_csv  <-here("_posts",
                 "2022-02-22-reading-and-writing-data",
                 "co-emissions-per-capita.csv")

emissions<- read_csv(file_csv)
  1. Show the first 10 rows (observations of) emissions.
emissions
# A tibble: 23,307 x 4
   Entity      Code   Year `Annual CO2 emissions (per capita)`
   <chr>       <chr> <dbl>                               <dbl>
 1 Afghanistan AFG    1949                              0.0019
 2 Afghanistan AFG    1950                              0.0109
 3 Afghanistan AFG    1951                              0.0117
 4 Afghanistan AFG    1952                              0.0115
 5 Afghanistan AFG    1953                              0.0132
 6 Afghanistan AFG    1954                              0.013 
 7 Afghanistan AFG    1955                              0.0186
 8 Afghanistan AFG    1956                              0.0218
 9 Afghanistan AFG    1957                              0.0343
10 Afghanistan AFG    1958                              0.038 
# ... with 23,297 more rows
  1. Start with emissions data THEN

-use clean_names from the janitor package to make the names easier to work with

-assign the output to tidy_emissions

-show the first 10 rows of tidy_emissions

tidy_emissions   <- emissions %>% 
  clean_names()

tidy_emissions
# A tibble: 23,307 x 4
   entity      code   year annual_co2_emissions_per_capita
   <chr>       <chr> <dbl>                           <dbl>
 1 Afghanistan AFG    1949                          0.0019
 2 Afghanistan AFG    1950                          0.0109
 3 Afghanistan AFG    1951                          0.0117
 4 Afghanistan AFG    1952                          0.0115
 5 Afghanistan AFG    1953                          0.0132
 6 Afghanistan AFG    1954                          0.013 
 7 Afghanistan AFG    1955                          0.0186
 8 Afghanistan AFG    1956                          0.0218
 9 Afghanistan AFG    1957                          0.0343
10 Afghanistan AFG    1958                          0.038 
# ... with 23,297 more rows
  1. Start with the tidy_emissions THEN

-use filter to extract rows with year == 2018 THEN

-use skim to calculate the descriptive statistics

tidy_emissions  %>%
  filter(year==2018)  %>%
  skim()
Table 1: Data summary
Name Piped data
Number of rows 229
Number of columns 4
_______________________
Column type frequency:
character 2
numeric 2
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
entity 0 1.00 4 32 0 229 0
code 12 0.95 3 8 0 217 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
year 0 1 2018.00 0.00 2018.00 2018.00 2018.0 2018.00 2018.00 ▁▁▇▁▁
annual_co2_emissions_per_capita 0 1 5.03 5.63 0.03 0.99 3.5 6.85 38.44 ▇▂▁▁▁
  1. 12 observations have a missing code. How are these observations different?
tidy_emissions  %>%
  filter(year==2018, is.na(code))
# A tibble: 12 x 4
   entity                     code   year annual_co2_emissions_per_ca~
   <chr>                      <chr> <dbl>                        <dbl>
 1 Africa                     <NA>   2018                         1.09
 2 Asia                       <NA>   2018                         4.44
 3 Asia (excl. China & India) <NA>   2018                         4.14
 4 EU-27                      <NA>   2018                         6.85
 5 EU-28                      <NA>   2018                         6.70
 6 Europe                     <NA>   2018                         7.48
 7 Europe (excl. EU-27)       <NA>   2018                         8.39
 8 Europe (excl. EU-28)       <NA>   2018                         9.15
 9 North America              <NA>   2018                        11.4 
10 North America (excl. USA)  <NA>   2018                         4.80
11 Oceania                    <NA>   2018                        11.4 
12 South America              <NA>   2018                         2.58

Entities that are not countries do not have country codes.

  1. Start with tidy_emissions THEN
emissions_2018  <- tidy_emissions  %>%
  filter(year == 2018, !is.na(code))   %>%
  select(-year)   %>%
  rename(country = entity)
  1. Which 15 countries have the highest annual_co2_emissions_per_capita?
max_15_emitters  <- emissions_2018  %>%
  slice_max(annual_co2_emissions_per_capita, n = 15)
  1. Which 15 countries have the lowest annual_co2_emissions_per_capita?
min_15_emitters  <- emissions_2018  %>%
  slice_min(annual_co2_emissions_per_capita, n = 15)
  1. Use bind_rows to bind together the max_15_emitters andmin_15_emitters`
max_min_15  <- bind_rows(max_15_emitters,min_15_emitters)
  1. Export max_min_15 to 3 file formats
max_min_15  %>% write_csv("max_min_15.csv") # comma-separated values
max_min_15  %>% write_tsv("max_min_15.tsv") # tab separated
max_min_15  %>% write_delim("max_min_15.psv", delim = "|") # pipe-separated
  1. Read the 3 file formats into R
max_min_15_csv <- read_csv("max_min_15.csv") # comma-separated values
max_min_15_tsv <- read_tsv("max_min_15.tsv") # tab separated
max_min_15_psv <- read_delim("max_min_15.psv", delim = "|") # pipe-separated values
  1. Use setdiff to check for any differences among max_min_15_csv, max_min_15_tsv, and max_min_15_psv
setdiff(max_min_15_csv,max_min_15_tsv)
# A tibble: 0 x 3
# ... with 3 variables: country <chr>, code <chr>,
#   annual_co2_emissions_per_capita <dbl>

Are there any differences?

  1. Reorder country in max_min_15 for plotting and assign to max_min_15_plot_data
max_min_15_plot_data  <- max_min_15 %>%
  mutate(country = reorder(country, annual_co2_emissions_per_capita))
  1. Plot max_min_15_plot_data.
ggplot(data = max_min_15_plot_data, mapping = aes(x= annual_co2_emissions_per_capita, y= country)) +
  geom_col() +
  labs(title = "The top 15 and bottom 15 per capita CO2 emissions",
    subtitle = "for 2018",
    x = NULL,
    y = NULL)

  1. Save the plot directory with this post.
ggsave(filename = "preview.png",path = here("_posts", "2022-02-22-reading-and-writing-data"))
  1. Add preview.png to yaml chunk at the top of this file
preview: preview.png